Increasing sensitivity for transformer protection using incremental differential
نویسندگان
چکیده
منابع مشابه
Transformer differential protection using wavelet transform
This paper will propose a cascade of minimum description length criterion with entropy approach along with artificial neural network (ANN) as an optimal feature extraction and selection tool for a wavelet packet transform based transformer differential protection. The proposed protection method provides a reliable and computationally efficient tool for distinguishing between internal faults and...
متن کاملDifferential Protection for Power Transformer Using Wavelet Transform and PNN
A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard dev...
متن کاملtransformer differential protection using the fault-generated high-frequency transient components
Power transformers are the most important components of a power system, so their protection is a critical issue. This paper proposes a novel and efficient algorithm based on the high-frequency components of the differential current signal to discriminate between the magnetizing inrush currents and the internal faults. After detecting the over-current in the differential current signals, samples...
متن کاملNumerical Differential Protection of Power Transformer using GA Trained ANN
This paper presents the use of ANN as a pattern classifier for differential protection of power transformer, which makes the discrimination among normal, magnetizing inrush, over-excitation, external fault and internal fault currents. The Back Propagation Neural Network Algorithm and Genetic Algorithm are used to train the multi-layered feed forward neural network and simulated results are comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Engineering
سال: 2018
ISSN: 2051-3305,2051-3305
DOI: 10.1049/joe.2018.0262